Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1101420150470010051
Korean Journal of Clinical Laboratory Science
2015 Volume.47 No. 1 p.51 ~ p.58
Effect of Ethanol on Mouse Brain Cell
Jang Hyung-Seok

Abstract
Ethanol has long been implicated in triggering apoptotic neurodegeneration. Alcohol also may indirectly harm the fetus by imparing the mother¡¯s physiology. We examined the effects of ethanol on immature brain of mice. Three-weeks-old female ICR strain mice daily intraperitoneally injected with ethanol at the concentration of 4 and 20% in saline for 0, 6, and 24 hours and 1 and 4 weeks. The mice were weighted and sacrificed, and the brains were ectomized for the present histological, immunohistochemical and TUNEL assays. Based on the histologic hematoxylin and eosin stain, immunohistochemical expression of glutamate receptor protein and neuronal cell adhesion molecule (NCAM) were evaluated. The cerebral cortex of the ethanol-treated group showed few typical symptoms of apoptosis such as chromosome condensation and disintegration of the cell bodies. TUNEL staining revealed DNA fragmentation in the 6 and 24 hours. This results demonstrated that acute ethanol administration causes neuronal cell death. I found that either glutamate receptor inhibition or activation could induce cerebellar degeneration as ethanol effect. Neuronal death also can be induced by excess activity of certain neurotransmitter, including glutamate. Neurons must establish cell-to-cell contact during growth and development in order to survive, migrate to their final destination, and develop appropriate connections with neighboring cell. Purkinje cell in cerebellar are especially vulnerable to the cell death and degeneration. After ethanol treatment in cerebellar, NCAM had decreased by 4 weeks. This result suggest that apoptosis seems to be involved in the slow elimination of neuron and cerebellar degeneration.
KEYWORD
Apoptosis, Brain, Ethanol, Glutamate, TUNEL
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)